4 research outputs found

    Performance Evaluation of Multi-Channel Wireless Mesh Networks with Embedded Systems

    Get PDF
    Many commercial wireless mesh network (WMN) products are available in the marketplace with their own proprietary standards, but interoperability among the different vendors is not possible. Open source communities have their own WMN implementation in accordance with the IEEE 802.11s draft standard, Linux open80211s project and FreeBSD WMN implementation. While some studies have focused on the test bed of WMNs based on the open80211s project, none are based on the FreeBSD. In this paper, we built an embedded system using the FreeBSD WMN implementation that utilizes two channels and evaluated its performance. This implementation allows the legacy system to connect to the WMN independent of the type of platform and distributes the load between the two non-overlapping channels. One channel is used for the backhaul connection and the other one is used to connect to the stations to wireless mesh network. By using the power efficient 802.11 technology, this device can also be used as a gateway for the wireless sensor network (WSN)

    A Security Analysis of the 802.11s Wireless Mesh Network Routing Protocol and Its Secure Routing Protocols

    Get PDF
    Wireless mesh networks (WMNs) can act as a scalable backbone by connecting separate sensor networks and even by connecting WMNs to a wired network. The Hybrid Wireless Mesh Protocol (HWMP) is the default routing protocol for the 802.11s WMN. The routing protocol is one of the most important parts of the network, and it requires protection, especially in the wireless environment. The existing security protocols, such as the Broadcast Integrity Protocol (BIP), Counter with cipher block chaining message authentication code protocol (CCMP), Secure Hybrid Wireless Mesh Protocol (SHWMP), Identity Based Cryptography HWMP (IBC-HWMP), Elliptic Curve Digital Signature Algorithm HWMP (ECDSA-HWMP), and Watchdog-HWMP aim to protect the HWMP frames. In this paper, we have analyzed the vulnerabilities of the HWMP and developed security requirements to protect these identified vulnerabilities. We applied the security requirements to analyze the existing secure schemes for HWMP. The results of our analysis indicate that none of these protocols is able to satisfy all of the security requirements. We also present a quantitative complexity comparison among the protocols and an example of a security scheme for HWMP to demonstrate how the result of our research can be utilized. Our research results thus provide a tool for designing secure schemes for the HWMP

    Isolation and Characterization of Avirulence Genes in Magnaporthe oryzae

    No full text
    Magnaporthe oryzae is a fungal pathogen contributing to rice blast diseases globally via their Avr (avirulence) gene. Although the occurrence of M. oryzae has been reported in Sarawak since several decades ago, however, none has focused specifically on Avr genes, which confer resistance against pathogen-associated molecular pattern-triggered immunity (PTI) in host. The objective of this study is to isolate Avr genes from M. oryzae 7’ (a Sarawak isolate) that may contribute to susceptibility of rice towards diseases. In this study, AvrPiz-t, AVR-Pik, Avr-Pi54, and AVR-Pita1 genes were isolated via PCR and cloning approaches. The genes were then compared with set of similar genes from related isolates derived from NCBI. Results revealed that all eight Avr genes (including four other global isolates) shared similar N-myristoylation site and a novel motif. 3D modeling revealed similar β-sandwich structure in AvrPiz-t and AVR-Pik despite sequence dissimilarities. In conclusion, it is confirmed of the presence of these genes in the Sarawak (M. oryzae) isolate. This study implies that Sarawak isolate may confer similar avirulence properties as their counterparts worldwide. Further R/Avr gene-for-gene relationship studies may aid in strategic control of rice blast diseases in future
    corecore